Atmospheric Chemistry Observation at the Summit of Mt. Fuji: *A Proposal for a Permanent Ground Base Platform of Free Troposphere*

Yukiko Dokiya¹, Yasuhito Igarashi², Yousuke Sawa², Hiroshi Takahashi², Naoki Kaneyasu³, Katsuhiro Yoshioka⁴, Yoko Katayama⁵ and Tasuku Akagi⁵

> 1:Edogawa U., 2:MRI, 3:AIST, 4:Shimane Pref., 5: Tokyo U. Agr. Tech.

Why Mt. Fuji?

(1) Free Troposphere (2) Weather Station since 1932 (3) But · · ·

(1) Free Troposphere

How it is shown:

- Diurnal change in O₃: very little
- Concentrations of chemical species in aerosol: comparable to the reported values of those in free troposphere →background level
- ◆ High wind speed → *long range transport*

(1) Free Troposphere

Reasons why it is so The shape of the mountain (heat capacity)

Sole peak Height

E-W Cross Section of Mountain

The summit is above boundary layer! Levels of contamination from local area are very low!

(2) Weather Station since 1932

Short History

19th century: an important meteorological observation point.

pioneers : Itaru & Chiyoko Nonaka

(Oct.-Dec., 1895)

: Jun'ichi Satoh

(Jan.-Feb., 1926),

Since 1932 operated manually by Japan Meteorological Agency (JMA)

Itaru (29) and Chiyoko(24) Nonaka, Pioneers of Mt. Fuji meteorological observation

(2) Weather Station since 1932

1964 RADAR Dome set up

Typhoon forecast(800km)

1999 RADAR observation ceased

staff members: 5 4

2001 RADAR Dome removed

(2) Weather Station since 1932 Air Chemistry: What we have done since 1990

- 1990-1992 : occasional precipitation sampling (E. Maruta and Meteorol. Coll.)
- 1992- : surface ozone started (continuous) (Y. Tsutsumi) aerosol by LV (Meteorol. Coll.)
- 1993 : aerosol by LV, Andersen LV, HCI, SO₂, NH₃ (a week in summer)
- 1994 : aerosol by LV& HV(⁷Be), Andersen LV, HCI, SO₂, NH₃ (five days in summer)
- 1997 : Summer Campaign (Meteorol. Res. Inst. & Meteorol. Coll.)
- 1998-2001 : (Meteorol. Res. Inst., Meteorol. Coll. & Tokyo U. Agr.&Tech.)
- 2002-2004 : (MRI, Meteorol. Coll., TUAT, Edogawa U., NIES, AIST, Shimane Pref. Inst. Publ. Health & Environ Sci., Toyama Pref. U.)

Major findings during 1997-2001 Fog and precipitation chemistry Hayashi et al, (2001) Water, Soil and Air Pollut. **Aerosol chemical species** Dokiya et al., (2001) Anal. Sci. <u>CO and O₃</u> Tsutsumi and Matsueda (2000), Atmos. Environ. **O**₃ and Be-7 Tsutsumi, Igarashi, et al.(1998) J. Geophys. Res. H₂O₂ and MHP Yonekura et al. in contribution

Mt. Fuji Weather Station at Present

4 staff members conduct surface meteorological observation on site, rotating every 3 weeks

Voluntarily taking care of instruments of atmospheric chemistry: *O*₃, *CO*, *CO*₂, *SO*₂,²²²*Rn*, *BC*, ⁷*Be*, *Aerosols etc*.

Observation site

- The room used for the preparation of RADAR observation is now available for atmospheric chemistry observation.
 The effect of Mountain climber can be
- negligible even in summer.

Atmospheric trace species measured

Species	measurement method	Instrument	DL	Precision
⁷ Be	HV-sampler g spectrometry	Sibata HVC1000F Ortec or Eurysis	~ 0.1 mBq/m3	~ 20%RSD
²²² Rn	Electrostatic collection a spectrometry	Semi-home made Ohyoh-Koken Co.	0.3 Bq/m3	~ 20% RSD at 1 Bq/m3
Species compared				
O ₃	Ultraviolet absorption	Dylec 1007-AHJ		2 ppbv
		Dylec 1150		
CO	Gas filter correlation	Thermo Electron 48C		15 ppbv
SO ₂	Ultraviolet fluorescence	Thermo Electron 43C-TL	0.1 ppbv	0.1 ppbv
Other species measured				
CO ₂	Infrared absorption	Licor 6252		0.1 ppmv
Black carbon	Aethalometer	Andersen Instruments		
Aerosol sulfate and ionic species	HV sampler ion chromatography	Sibata HVC1000F HP-Yokogawa or Dionex		
Particle number	Laser particle counter	Kanomax		

Black carbon analyzer

High volume sampler

SO₂ analyzer

Setup of the instruments at Mt. Fuji weather station

Rn monitor

CO2 monitor

Setup of the instruments at Mt. Fuji Weather Station

Recent issues found at the summit of Mt. Fuji

(1) Determination of the effects of a Siberian forest fire, as found in black carbon concentration

(2) Continuous SO₂ observation prevails sporadic transport of polluted air masses from the continent controlled by synoptic scale meteorology

(3) Nitrate transportation with Kosa particles

Smoke from a Siberian Forest Fire May 22, 2003, 15:00pm

Mid-town Sapporo Hazy from the reddish sun, even though no cloud was observed (provided by Sapporo Meteorological Observatory)

Annual change of BC concentration at the summit of Mt. Fuji (N. Kaneyasu)

Typically, no high concentrations of BC are seen in winter

Concentration of BC in the "forest fire plume" on May 21 and May 24, 2003 (N. Kaneyasu)

Concentrations of BC and CO in the "forest fire plume" on May 21 and May 24, 2003 (N. Kaneyasu)

Concentrations of BC and O₃ in the "forest fire plume" on May 21 and May 24, 2003 (N. Kaneyasu)

No typical photochemical production of ozone is found in the plume

The reason of concentration increase about 2 hours after 0500JST on May 22?

Particle counter compared with Aethalometer

Summary for Siberian forest fire

- Aethalometer showed peaks (BC)
- Particle counter showed peaks in small particles
- CO showed good correlation with BC
- O3 showed no correlation with BC
- Model study

Recent issues found at the summit of Mt. Fuji

(2) Continuous SO₂ observation prevails sporadic transport of polluted air masses from the continent controlled by synoptic scale meteorology.

Diurnal change of SO2 concentration

Concentration peaks of CO and Rn without SO₂ peaks (Y. Igarashi)

Temperature (°C)

Summary for SO₂ (Y. Igarashi)

- SO₂ is very low at the summit of Mt. Fuji.
- Dirunal change is very small.
- Winter high concentration event is observed in the Continental air mass.
- The effect of volcano may be negligible.
- Most SO₂ peaks coincided with CO and Rn peaks.
- CO and Rn peaks without SO₂ peaks occurs when the humidity is high.

Recent issues found at the summit of Mt. Fuji

(3) Nitrate transportation with Kosa particles

Soluble Chemical Species in Aerosol (I. Suzuki)

Tentative conclusions from recent research

- * Mt. Fuji has potential importance as <u>a</u> platform for chemical observation of free troposphere.
- * Mt. Fuji can offer *continuous observation* data, which cannot be obtained by airplane observations.
- * More fruitful outcomes can be expected from observation in the future,

if continued

(3) But

Mt. Fuji Weather Station is now closing after this summer !

At best, automatic operation may be continued

Because chemists need SAMPLES, manual operations are *really* desirable.

In the world

- High mountain observations have been performed
- Mauna Loa, USA,
- Jungfraujoch, Switzerland,
- Mt. Waliguan, China,
- Mt.Sonnblick, Austria, etc.
- Japan is far behind in this field.

Mauna Loa, Hawaii

Elevation: 3397m a.s.l.

http://www.mlo.noaa.gov/

Gletscher-Restaurants Jungfraujoch–Top of Europe

Elevation: 3578m a.s.l.

JUNGFRAUBAHNEN

Mt.Waliguan, China

Therefore

An Atmospheric Science Institute must be established

at the summit of Mt. Fuji which is *open for all researchers*

which is open internationally

Present cost for maintenance and operation Maintenance only: ~\$ 400,000/year With personnel expenses: ~ \$1,500,000/year **Expensive?** Reasonable?

However

No concrete plan exists at present *neither public nor* private

We ask for Support Domestic and also International

Thank you!